A Screen for Suppressors of Gross Chromosomal Rearrangements Identifies a Conserved Role for PLP in Preventing DNA Lesions

نویسندگان

  • Pamela Kanellis
  • Mark Gagliardi
  • Judit P Banath
  • Rachel K Szilard
  • Shinichiro Nakada
  • Sarah Galicia
  • Frederic D Sweeney
  • Diane C Cabelof
  • Peggy L Olive
  • Daniel Durocher
چکیده

Genome instability is a hallmark of cancer cells. One class of genome aberrations prevalent in tumor cells is termed gross chromosomal rearrangements (GCRs). GCRs comprise chromosome translocations, amplifications, inversions, deletion of whole chromosome arms, and interstitial deletions. Here, we report the results of a genome-wide screen in Saccharomyces cerevisiae aimed at identifying novel suppressors of GCR formation. The most potent novel GCR suppressor identified is BUD16, the gene coding for yeast pyridoxal kinase (Pdxk), a key enzyme in the metabolism of pyridoxal 5' phosphate (PLP), the biologically active form of vitamin B6. We show that Pdxk potently suppresses GCR events by curtailing the appearance of DNA lesions during the cell cycle. We also show that pharmacological inhibition of Pdxk in human cells leads to the production of DSBs and activation of the DNA damage checkpoint. Finally, our evidence suggests that PLP deficiency threatens genome integrity, most likely via its role in dTMP biosynthesis, as Pdxk-deficient cells accumulate uracil in their nuclear DNA and are sensitive to inhibition of ribonucleotide reductase. Since Pdxk links diet to genome stability, our work supports the hypothesis that dietary micronutrients reduce cancer risk by curtailing the accumulation of DNA damage and suggests that micronutrient depletion could be part of a defense mechanism against hyperproliferation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-44: Mutagenesis during Embryogenesis

We developed several novel tools to genome wide screen for CNVs and SNPs in single cells. When applied to cleavage stage embryos from young fertile couples we discovered, unexpectedly, an extremely high incidence of chromosomal instability, a hallmark of tumorigenesis (Vanneste et al., Nature Medicine, 2009; Vanneste et al., Hum.Reprod., 2011). Not only mosaicisms for whole chromosome aneuploid...

متن کامل

Accumulation of recessive lethal mutations in Saccharomyces cerevisiae mlh1 mismatch repair mutants is not associated with gross chromosomal rearrangements.

We examined mismatch repair (MMR)-defective diploid strains of budding yeast grown for approximately 160 generations to determine whether decreases in spore viability due to the uncovering of recessive lethal mutations correlated with an increase in gross chromosomal rearrangements (GCRs). No GCRs were detected despite dramatic decreases in spore viability, suggesting that frameshift and/or oth...

متن کامل

Elg1 Forms an Alternative PCNA-Interacting RFC Complex Required to Maintain Genome Stability

BACKGROUND Genome instability is a hallmark of cancer and plays a critical role in generating the myriad of phenotypes selected for during tumor progression. However, the mechanisms that prevent genome rearrangements remain poorly understood. RESULTS To elucidate the mechanisms that ensure genome stability, we screened a collection of candidate genes for suppressors of gross chromosomal rearr...

متن کامل

PARP3 is a promoter of chromosomal rearrangements and limits G4 DNA

Chromosomal rearrangements are essential events in the pathogenesis of both malignant and nonmalignant disorders, yet the factors affecting their formation are incompletely understood. Here we develop a zinc-finger nuclease translocation reporter and screen for factors that modulate rearrangements in human cells. We identify UBC9 and RAD50 as suppressors and 53BP1, DDB1 and poly(ADP)ribose poly...

متن کامل

Genome-wide amplifications caused by chromosomal rearrangements play a major role in the adaptive evolution of natural yeast.

The relative importance of gross chromosomal rearrangements to adaptive evolution has not been precisely defined. The Saccharomyces cerevisiae flor yeast strains offer significant advantages for the study of molecular evolution since they have recently evolved to a high degree of specialization in a very restrictive environment. Using DNA microarray technology, we have compared the genomes of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS Genetics

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2007